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Summary 

A model of the lead-acid cell is developed in which due regard is given 
to the influence of mass transport processes operating in the bulk electrolyte 
as well as within the plates. It is predicted that, at high rates, the capacity of 
a cell discharged at constant current will be limited by diffusion so that the 
current density, I, should be related to the discharge time, 7, as I a [r]-“*5. 
At low rates the capacity will be limited by acid depletion and I will be 
a [r] -l.‘. The model has been tested against published data for commer- 
cially available lead/acid batteries and there is good agreement between the 
predicted and measured I/T relationships in both the high rate and the low 
rate regimes. The expressions derived for the capacity of plates discharged in 
the two regimes also show how the observed positive plate limit on capacity 
derives from constraints arising out of the two electrode reactions. 

Introduction 

The useful capacity recoverable from a charged lead-acid cell depends 
upon a wide range of fundamental parameters which predetermine the re- 
sponse of the cell to selected operating variables such as temperature, dis- 
charge current, etc. In order to optimise the performance of the cell, atten- 
tion must be paid both to the composition of the active material in the elec- 
trodes and also to their microstructure. Composition is particularly signifi- 
cant for PbOz cathodes because of the widely reported (e.g., [l] ) essential 
requirement that they be prepared electrochemically and the possible link 
between this requirement and the hydrogen content of the material [2] . 
Microstructure will represent a key factor in deciding the capacity available 
at practical rates. Unfortunately both electrode reactions 

Change in 
Molar 
Volume 

Positive plate: PbOz + 3HsO’ + HSOc+ 2e- + PbS04 + 5Hz0 

Negative plate: H,O + Pb + HSO< + PbS04 + HsO’+ 2e- 

+ 91.8% 

+ 167.7% 
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are accompanied by very large volume increases of the solid phases, and as 
discharge proceeds the acid access into the pores of the electrodes becomes 
progressively restricted. It is clear that the active material is deployed to the 
best advantage in a microstructure which facilitates contact with the liquid 
phase reactants at all stages of the reaction. The present paper examines the 
transport processes involved in maintaining the supply of liquid phase re- 
actants to the site of the current-sustaining reaction, and the controlling 
influence these processes impose on the accessible capacity of an electrode. 

Ions in the electrolyte can move by diffusion, by convection, and by 
migration under an electric field gradient. The rate of transport by these 
mechanisms depends on the electrode geometry and porosity, the type of 
separator in use, the electronic and ionic conductivities of the solid and 
liquid phases, respectively, and the current/voltage characteristics of the elec- 
tron transfer reactions at each electrode. Since so many complex and inter- 
acting factors are involved in determining the performance characteristics of 
the lead-acid cell, commercial battery design tends to the empirical, based 
largely on a manufacturer’s experience, and performance has to be assessed 
by practical tests. Cell capacity at numerous different rates can be collected 
together by using empirical relationships such as the Peukert equation [3] 

1”~ = constant, 

where I is the constant discharge current density, r is the discharge time to 
some voltage cut-off and n is a constant usually found to take a value be- 
tween 1.3 and 1.4 [4] . Useful as such equations may be, they give no insight 
into the factors determining the battery’s performance, so any improvement 
requires expensive and time consuming trials of different empirical design 
changes. Many of these may prove to have an insignificant effect, or worse, 
be detrimental to performance. With so many factors interacting to deter- 
mine the overall behaviour, it is most unlikely that the optimum combina- 
tion of all the possible variables will be found by trial and error methods, 
i.e., without quantitative knowledge of the factors limiting performance. 

Some years ago it was proposed [5] that porous electrodes, such as 
are found in the lead-acid cell, could be viewed on a macroscopic scale. 
It was suggested that the geometric detail of the microporous structure of 
the electrodes could be disregarded and that variables such as potential and 
current in the two phases could be successfully treated as continuous func- 
tions of time and space. A similar macrohomogeneous model was later 
applied to the lead-acid battery by Micka and Rousar [6 - 81. These authors 
pointed out that the theoretical discharge capacity of the negative plate is 
higher than that of the positive plate so that cells with equal positive and 
negative plate areas will normally be positive limited. 

The difference in conductivity between the electrolyte and electrode 
phases, together with the potential dependence of the current density, leads 
to a non-uniform current distribution through the plate thickness. Since the 
electrolyte phase has the higher resistivity (even in the fully charged state), 
the discharge reaction occurs preferentially near the free electrolyte/plate 
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interface. During discharge the electrolyte concentration becomes depleted 
and, besides reducing the reaction rate by the law of mass action, this deple- 
tion also has the effect of depressing the conductivity of the liquid phase. 
For high rates of discharge the mass transport of sulphuric acid by diffusion 
and migration (convection is negligible within the plate pores) is insufficient 
to replenish that consumed in the cell reaction, so the non-uniformity of 
current density distribution in the plate is aggravated and the reaction be- 
comes further restricted to a thin surface layer. This is shown by the work 
of Bode [ 91 who investigated the spatial distribution of PbS04 in discharged 
plates and found that at high discharge rates PbS04 was concentrated on the 
outside of the plates while at low rates the distribution was more even. 

The macrohomogeneous model has been applied to the lead dioxide 
electrode by Simonsson [lo] who concluded that unless the initial porosity 
of the electrode was greater than 50%, the utilisation of active material in 
the plate interior could be curtailed by plugging of the pores by lead sul- 
phate crystals. When the model was used to predict the performance of the 
positive plate in a battery it was noticed that the decreasing concentration of 
sulphuric acid in the bulk electrolyte became a significant factor. 

In their model of the complete Pb/H2S04/Pb02 cell, Micka and Rousar 
neglected the effect of changes in electrolyte concentration with distance be- 
tween the plates (in effect assuming infinitely rapid mass transport of acid 
from the free electrolyte into the porous plates). In justification of this 
assumption it was suggested that the electrolyte would become well mixed 
by natural convection caused by density gradients. While this may be a rea- 
sonable view to take of truly free solutions, it seems less reasonable in the 
presence of fibrous separators and containment bags. 

In the present paper the effect of concentration gradients in the elec- 
trolyte is explored and the importance of mass transport in determining cell 
performance is reaffirmed. It is also shown that when bi-logarithmic plots are 
used to present published data for commercially available batteries, the two 
principal transport mechanisms manifest themselves in the form of a change 
of slope. 

Principles of the analysis 

The elements of a section through one pair of plates in a lead-acid cell 
are shown schematically in Fig. 1. The charged electrodes consist of porous 
matrices of electronically conducting active material with their pores filled 
with electrolyte. Because of the geometric complexity of such structures, it 
is impractical to consider quantitatively the behaviour of the plates unless a 
model with a high degree of uniformity is adopted to simplify the mathe- 
matics defining the overall parameters such as mass transfer and potential 
and current distributions. The macrohomogeneous model mentioned above 
serves this purpose and will form the basis of the present treatment. At any 
given moment during charge or discharge there will be a large range of reac- 
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Fig. 1. Schematic representation of a section through a pair of plates in a lead-acid cell. 

Fig. 2. Schematic representation of a porous electrode treated as a macrohomogeneous 
volume with properties varying only in the direction normal to its surface. After Newman 
and Tobias [ 51. 
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Fig. 3. Constant current discharge at a plane electrode. (a) Schematic representation of 
the progressive development of the electrolyte concentration profile near the surface; 
(b) schematic potential-time curve. 

tion rates within the pores, the distribution of which will be determined by 
physical structure, conductivities of electrode and electrolyte and by the 
parameters that characterize the rate of reaction at the solid/liquid inter- 
face - viz., the electrochemical kinetics and the concentration of the elec- 
trolyte. This rate distribution (which will change during the course of charge 
or discharge) directly influences the net power available from a battery. Over 
the dimensions of a battery plate these microscopic variations can be aver- 
aged into continuously varying functions by considering the electrode as a 
homogeneous region. 

The parallel plate configuration, together with the high conductivity 
current collector used in lead-acid batteries means that the electrode can be 
considered to be uniform over its face, as shown schematically in Fig. 2. 
Consequently, quantities such as potentials, current densities, and concentra- 
tions vary only with depth into the electrode and not with lateral position. 
Thus the electrode processes need only be considered in one dimension, i.e., 
from the current collector, through the active material and into the free elec- 
trolyte. 

The analysis begins with the consideration of a constant current dis- 
charge at a solid plane electrode with a binary electrolyte that is consumed 
in the electrode reaction to produce an insoluble product that does not 
occlude electroactive areas of the electrode. Figure 3(a) shows a schematic 
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representation of the progressive change in electrolyte concentration profile 
with time near to the electrode surface (at x = 0) and Fig. 3(b) shows, again 
schematically, the potential-time variation for the surface of the plane elec- 
trode undergoing constant current discharge. The point of the end of dis- 
charge is when the electrolyte concentration at the electrode surface be- 
comes zero (Fig. 3(a)). At this time the potential tends to fall (Fig. 3(b>) due 
to the increased resistance of the dilute solution. In the model used here, the 
following assumptions have been made:- 

(1) the concentration of acid is small (< 5 molar) compared with the 
concentration of water (- 55 molar); 

(2) convection in the inter-plate electrolyte is ignored because the fi- 
brous separators and containment bags around the positive electrode restrict 
movement ; 

(3) the variation of activity and diffusion coefficients with concentra- 
tion is also ignored. 

Though none of these assumptions is precisely valid in the real battery 
situation, they give a first order approximation which enables the trends of 
behaviour to be indicated with reasonable accuracy. 

From Appendix 1, the general expression relating the gradient of acid 
concentration at the electrode surface to the current density is given by:- 

(11) 

where G is a constant with the values of 3 - 2t+ and 2t+ - 1 for the positive 
and negative plates, respectively. Equation (11) is a specialized statement of 
Fick’s first law of diffusion. 

By considering the mass balance between the acid consumed in the elec- 
trode reaction and that transported to the interface by diffusion and migra- 
tion, Appendix 2 shows that 

ac -+ 
at 

(15) 

which will be recognised as a statement of Fick’s second law of diffusion. 

High rate discharge 

Figure 3(a) shows schematically how the acid concentration near to one 
electrode of the one dimensional cell develops with discharge. For the time 
being the other plate is assumed to be far enough away not to affect the 
situation and this is a fair assumption for high rate discharge. In Appendix 3 
the expression relating discharge time, 7, and current density, I, for discharge 
at high rates is developed and this is 
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+/2 = FC-@ 

GI 
(21) 

where C, is the initial uniform electrolyte concentration and all other sym- 
bols take their earlier meanings. 

. 

Low rate discharge 

In practice the interplate electrolyte concentration is not infinite in a 
lead-acid cell so that, on slow discharge, before the end of discharge condi- 
tion (Co(r) = 0) is reached the bulk acid may become depleted to a critical 
degree. Figure 4 shows a schematic representation of the progressive decrease 
in acid concentration between a pair of plates as discharge proceeds. In Ap- 
pendix 4 this model is developed to give an expression relating T and I for 
discharge of each plate at low rates: 

where Pi represents the distance from each plate to the point of least acid 
depletion between the plates (see Fig. 4). 

HZSOb 
CONC'N ’ 

NEGATIVE POSITIVE 

Fig. 4. Distribution of electrolyte concentration between the plates of a lead-acid cell 
showing depletion at low rate discharge. P+, P_ represent the distances of the positive and 
negative plate, respectively, from the acid concentration maximum (C,,). 

Influence of the two electrodes considered separately 

Considering the capacities of the individual plates as they are allowed to 
reach the termination condition of C,, = 0: 

For high rate discharge eqn. (21) is applied so that for the positive plate 
capacity 

17, = 
G?I 



25 

and for the negative plate 

C ‘F2nD 
IT- = - 

G_2I ’ 

From the definition of G it is evident that G, > G-, e.g., if t, - 0.8 (for 5M 
H2S04) G- - 0.6, G, - 1.4. Therefore 

IT, < IT-. 

For low rate discharge, applying eqn. (26) gives, for a positive plate, a capac- 
ity 

and for the negative plate 

Now from eqn. (22) in Appendix (4) it is clear that 

P, G- -=-* 
P- G, 

So that in the low current limit 

IT+ 2P+FC, G- -= 
IT- 2P_FC, = G,’ 

Hence, it is clear that in both these extreme situations the contribution 
to the capacity from the interplate electrolyte will be positive plate limited 
for the same geometric plate area. The reason for this dependence originates 
in the ratio of the factors G+/G_ which derive from the transport number of 
the positive ion, and the result is the well known observation that the ineffi- 
ciency of diffusion and migration transport processes manifests itself first at 
the positive electrode. 

It might be possible to improve energy density somewhat by tailoring 
the electrode areas to the ratio of active material actually used (i.e., more 
positive material than negative) but cycle life may then suffer as a conse- 
quence of incomplete reversibility of the cell reaction. 

Application to real battery data 

Expressions have been developed for the dependence of the capacity of 
a model electrode on the efficiency of transport processes in the electrolyte 
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Fig. 5. Schematic representation of the electrolyte profiles in the plate and in the bulk 
electrolyte during discharge. 

Fig. 6. Variation of negative plate constant current discharge capacity with plate thick- 
ness. Solid lines represent a fit to the linear part of each curve - originating among the 
points applying for thick electrodes. The slope of the linear part indicates the change in 
capacity contributed by acid in the pores of the plate, and the intercept on the capacity 
axis represents the contribution by’acid from the interplate volume. The open points and 
dashed curves represent measured values taken from ref. 12. 

for high and low rate discharges. It is important to test the applicability of 
these expressions to the real battery situation. 

All the current flows from one electrode through the interplate free 
electrolyte and into the other plate so that it might appear possible to con- 
sider both the plate acid, dealt with in earlier treatments [6 - 81, and the free 
acid, treated here, under the same constant current discharge -- especially as 
they are both limited by the same discharge termination conditions of the 
acid concentration at the plate/electrolyte interface reaching zero (Fig. 5). 
Then the effect of the free electrolyte could be allowed for by a simple addi- 
tion of these contributions. 

This hypothesis can be tested since the contribution to the total capac- 
ity from the acid contained in the pores is proportional to the plate thick- 
ness [ 12,131, while the free electrolyte component is independent of this. 
The variation in capacity with thickness of the negative and positive plates 
is given in Figs. 6 and 7, respectively, which show data taken from refs. 12 
and 13. The majority of the data points - particularly for discharge at the 
higher rates -- fall on straight lines which make a positive intercept on the 
capacity axis when projected back to zero plate thickness. This positive 
intercept corresponds to the capacity contributed by the free electrolyte. In 
the zero plate thickness limit the free electrolyte contribution is no longer 
used of course and so the real capacity curves (dotted lines) must actually 
pass through the origin. The departure from the straight line plots is most 
pronounced for the discharge at lowest current density where there is the 
greatest free electrolyte contribution to be lost. This pattern of behaviour is 
exhibited by both plates and thus it can be concluded that the simple addi- 
tion of the contribution to capacity made by pore electrolyte on the one 
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Fig. 7. Variation of positive plate constant current discharge capacity with plate thick- 
ness. As in Fig. 6, the solid lines represent a fit to the linear parts of the curves and the 
dashed curves represent measured values taken from ref. 13. 
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Fig. 8. Bi-logarithmic plot of published data [14] for a lead-acid stationary battery. 
Specific gravity of electrolyte = 1.215 and temperature = 25 “C. The data for high rates 
(small values of T) lie on a line with a slope of -0.5 and the data for low rates lie on a 
line with a slope of -1 .O. 

hand and bulk electrolyte on the other is a reasonable approach, particularly 
for thick electrodes and for high rates of discharge. For a more accurate 
prediction of cell capacity the computer calculation developed by Micka and 
Rousar [8] could be extended to allow for concentration variation with 
distance in the free electrolyte region. 
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Fig. 10. Low rate data from Fig. 8 plotted as ? against I--‘“. 

The expressions for constant current discharge time (eqns. (21) and 
(26)) indicate that at high rates (short times) the discharge should be gov- 
erned by I = KT-O*~ and at low rates by I = K’T-~*~, where K and K’ are con- 
stants. When the published data [14] for a lead-acid stationary battery are 
presented on a bi-logarithmic (Peukert) plot, as in Fig. 8, it is clear that they 
fit very well to two straight line regions with slopes of approximately -0.5 
(at high rates) and -1.0. The agreement with theory is more clearly seen in 
Figs. 9 and 10 which show the high rate data plotted as r1’2 against I-’ and 
the low rate data plotted as r against I-‘. Similar good agreement is obtained 
if the data from ref. 14 for other types of lead-acid batteries are plotted in 
the same way. The general conformity to this pattern indicates that the plate 
acid contribution to the capacity shows a switch over in time dependence 
(from r-o.5 to r-*-O) as well as the free electrolyte. 

Consideration of eqns. (21) and (26) could also lead to the expectation 
that capacity should rise with increased acid concentration. Up to a point 
this will be true, but ultimately the three assumptions made early in the anal- 
ysis break down and capacity will be limited by pore blockage. Excessively 
concentrated acid would also cause problems of accelerated grid corrosion. 
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Discussion 

While it is encouraging to find that the expressions for capacity devel- 
oped here appear to fit the behaviour of commercial batteries, it is pertinent 
to probe the reasons why the use of the Peukert equation has given single 
slope plots in other cases. One possible explanation would be that in some 
cases there might be an overlap of the T-O.’ and the r-l*’ regions instead of 
the rather sharp ‘knee’ shown in Fig. 8. In a central region where control was 
shared by diffusion and bulk acid depletion the Peukert slope of around 1.4 
could be synthesized out of the two limiting slopes. It is interesting to note 
that in one careful study [ 131, where a Peukert plot was obtained which had 
a mean slope of 1.4, the slope increased to 2.0 at high current density and 
decreased to 1.03 at low current density. 

The method of measuring capacity is also important. The analyses de- 
scribed above are only valid for constant current discharge and would not 
apply to capacities measured by discharge through a resistor. As the battery 
voltage started to fall the current would fall and the rate of approach to the 
end point would decrease. 

One further limitation is that of porosity. The present analysis will not 
be valid for battery discharges which are terminated prematurely owing to 
pore blockage arising from inadequate initial porosity. 

The successful application of the analysis to commercial battery perfor- 
mance indicates that capacity is limited by the transport processes taken into 
account in the model. Only a change to forced convection of the electrolyte 
seems likely to contribute substantially to t.his aspect of lead. -acid battery 
performance. Indeed, a recent report [ 151 indicates that under conditions of 
circulating electrolyte, an increase in the capacity of motive power cells can 
be obtained. 

Conclusions 

By taking a macroscopic view of the porous electrodes in the lead-acid 
cell, thereby disregarding the complicated geometric details of their porous 
structure, it has been possible to treat the mass transport processes in the 
electrolyte in a quantitative fashion. The analysis predicts that at high rates 
capacity will be diffusion controlled and the time, 7, of discharge at constant 
current density, I, should be given by Z = Kr-‘.‘, where K is a constant. At 
low rates it is predicted that the capacity will be controlled by acid depletion 
and Z will be given by Z = K’r-l*O where K’ is a constant # K. These two 
expressions successfully predict the variation of capacity of commercially 
available lead-acid batteries with discharge rate. 

List of symbols 

7 Discharge time to voltage cut-off 
T+, T- Discharge time for positive and negative plates, respectively 
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D+, D- 
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CO 
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t+, t- 
t 
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vo 

Pi 

R 
T 

hi 

zi 
si 

$S) = I? 
S 

:e 
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Constant discharge current density 
Number of electrons involved in electrochemical reaction 
Faraday constant 
The binary diffusion coefficient = ZD+D_/D+ + D_ 
Diffusion coefficient of HaO’, HSO,, respectively 
Electrolyte concentration variable 
Electrolyte concentration at electrode surface 
Initial uniform electrolyte concentration 
Distance variable normal to electrode surface 
Constant = 2t+ -1 for negative plate (G_), and 3 - 2t+ for positive plate (G,) 
Transport numbers for HJO’, HSO,, respectively. 
Time variable 
Concentration of species i 
Mean velocity of species i 
Mean velocity of solvent 
Electrochemical potential of i 
Universai gas constant 
Temperature 
Current density 
Flux of species i 
Charge on ion i 
Stoichiometry number of species i 
Chemical potential of the electrolyte 
Laplace transform of concentration with respect to time 
Laplace transform time variable 
Laplace transform distance variable 
Electrochemical rate constant at standard electrode potential 
Transfer coefficient 
Potential difference from open circuit voltage 
Distance from each plate to the point of least acid depletion in the interplate 
volume 

References 

1 J. Perkins, Mater. Sci. Eng., 28 (1977) 167. 
2 S. M. Caulder, J. S. Murday and A. C. Simon, J. Electrochem. Sot., I20 (1973) 1515. 
3 W. Peukert, Elektrotech. Z., 18 (1897) 289. 
4 K. Peters, Chloride Inf. Bull., (1975) AM 64.2. 
5 J. S. Newman and C. W. Tobias, J. Electrochem. Sot., 109 (1962) 1183. 
6 K. Micka and I. Rousar, Electrochim. Acta, 18 (1973) 629. 
7 K. Micka and I. Rousar, Electrochim. Acta, 19 (1974) 499. 
8 K. Micka and 1. Rousar, Electrochim. Acta, 21 (1976) 599. 
9 H. Bode, H. Panesar and E. Voss, Naturwissenschaften, 55 (1968) 541. 

10 D. Simonsson, J. Appl. Electrochem., 4 (1974) 109. 
11 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New 

York, 1976, p. 1020. 
12 D. J. Haworth and K. Peters, EPS Ltd., R & D Dept. Rep. No. 0089/5, 1971. 
13 P. E. Baikie and K. Peters, EPS Ltd., R & D Dept. Rep. No. 0013/l, 1970. 
14 The Gould Battery Handbook, Gould Inc., 1973, p. 271. 
15 W. G. Sunu and B. W. Burrows, J. Electrochem. Sot., 128 (1981) 1405. 



31 

Appendix 1 

The general expression relating current density to the electrolyte concentra- 
tion gradient at the electrode surface 

The equation for the flux of component i in concentrated solution can 
be written: 

DiCi api 
Ni = CiVi = CiVo- RT z 

where the term CiV, represents the contribution made by convection, and 
the term involving the electrochemical potential, /Ai, covers the effects of 
both ion migration and diffusion. 

In the case of the plates in a lead-acid battery surrounded by separators 
and containment bags the convection term can be ignored and the equation 
reduces to 

DiCi api Ni=--_, 
RT ax 

For acid of the strength normally used in batteries the equilibrium 

H,SO,, f H’ + HS04 

lies well to the right and we can safely write 

c = c, = c-. 

The positive plate electrode reaction is, effectively, 

PbOz + 3H’ + HSO, + 2e- + PbS04 4 + 2Hz0. 

The flux of HSO, will be designated as N_ and the flux of H’ as N, so 
that, arising from mass balance at the surface of the electrode 

CZiNi = ~ 
i 

and 

Xi - aNi 
-~--~i 
at ax 

(1) 

(2) 

(3) 

(4) 

where 
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Si ai 
&i= nFz 

and Si is the stoichiometry number for species i. 

From eqn. (2) 

ac, ac -aN+ 3 ai 
-= _ = _ + - _ since n = -2 
at at ax 2F ax 

and 

ac- ac -aN_ 1 ai 
-= -=-+-- 
at at ax 2F a3c 

by subtraction 

aN+ aN_ 1 ai 
-=-- 

Z- ax F ax 

which, by back substitution gives 

ac i aN+ 3 aN_ 
_=----- 
at 2ax 2 ax 

so that, in a pseudo steady state where X/at = 0 

N, = 3N_. (5) 

Now the chemical potential of the electrolyte due to its electroneutral- 
ity is given by 

Pe = v+EI+ + V-K- 

so that 

(6) 

ak ap+ a6 _=-+_= 
ax ax ax 

RT $(ln at) 

where v = v, + v-. 
Ignoring the variation of activity coefficient with concentration 

34 vRT iX -=RT$lnCuz-_-_. 
ax c ax 

From eqns. (1) and (5) 

D acl, = 3D_ % 
+ ax ax * 

(7) 

(3) 
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Now the total current is given by the sum of the fluxes 

I 
-=N+ -N_ = 

--D+c+ a/J+ D-C_ a&L 

F 
- - + ---+ c (from eqn. (1)) 

RT i-lx 

which, combined with eqns. (2) and (8), becomes 

I -3LLC &L_ D-C a~_ - W-C ap_ _=__+__= 
F RT ax RT ax RT ax’ 

Now combining eqns. (6) and (8) gives 

D- ap- D-D+ acl, 
-= (3D_+D+) ax ax 

so that 

I -W_D+C ape -= 
F (3D_ + D+)RT %? 

Taking account of eqn. (7), 

Cap, ac 
-= 2RTz 
ax 

gives 

I -40-D+ aC 

F-(3D-+D+)‘% 

Now writing D as the binary diffusion coefficient 

D++D_ 

I -W(D+ + D-) aC -= 
F 3D_ + D, *ax 

and since the positive ion transport number, 

t, = D+/(D+ + D-) 

I -D aC 
_= 
2F (3 - 2t+) ’ %- 

or 
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III D ac 
-= 
nF (3- 2t+) . G-’ 

since n = 2. 

Similarly for the negative plate reaction 

Pb + HS04- + PbSO& + H’ + 2e- 

the mass balance at the electrode surface gives 

ix, ac --aN, 1 ai 
-= _=-+_- 
at at ax 2F ax 

and 

ac_ ac -aN_ 1 ai _=_=_--- 
at at ax 2F ax 

since S, = -1 and n = 2 

since S- = 1. 

Hence 

N+=-N_ and II+% 
a6 = D_-. 

ax ax 

Combining positive and negative ion fluxes 

I -D+C ap, D-C &.t_ _=N+-N_= _-+-- 
F RT ax RT ax 

=RT ii? 

Now this case 

ak ap+ a6 _=_.= - 
ax ax ax 

Hence 

I -2D+D_ C a/& 

F=D_-D, ‘RT’G 

and as before 
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c&L? 
dX 

= 2RTE 
so that 

I -4D+D_ aC -= 
F (D- -D+) ax 

-2(D_ +D+) DaC 20 aC 

= (D--D+) ax= (1 - 2t+) ax 

and 

III D ac 
-= 
nF (2t+-1) ’ %’ 

(10) 

A general expression of eqns. (9) and (10) would be 

Ill D ac 
_=_. - 
nF i 1 G ax, 

(11) 

where G is a constant describing the effect of the electric field on transport 
and is numerically equal to 3 - 2t+ for the positive plate and 2t+ - 1 for the 
negative plate. The subscript 0 signifies that the term represents the concen- 
tration gradient at the electrode surface. 

Appendix 2 

Transport of species in the bulk of the electrolyte 

In the bulk of the solution no reaction is taking place so that eqn. (4) 
(Appendix 1) becomes 

Xi - aNi Di a 
_=_=-- 

at ax RT ax 

Since v- = v, =l and C=C+=C_ 

at RT ax 
(12) 

Thus 



f.(D+E!&)= $!D_ c$) 

and since 

_L(E$+_L(?$+)+$(!.$) 

therefore 

=-- 

From eqn. (7) in Appendix 1 with Y = 2 

cak 
-=2RTg 
ax 

so that 

a cape 
i 1 -- 

ax ax 
=2RT$ 

and, substituting eqns. (13) and (14) in eqn. (12) gives 

iX D, D_ a2c -=_. -* 2RT- 
at RT (D, + D-) ax2 

a% 
=D-. 

ax2 

(13) 

(14) 

(15) 

Appendix 3 

High rate discharge 

The one dimensional half-cell is represented as in Fig. 3(a) with x = 0 
being the electrode plate surface. The binary electrolyte is transported to- 
wards the electrode where it is consumed in the electrode reaction according 
to eqn. (15): 

ac a2c -= D- 
at ax2 

replacing y = x&/D (16) 
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then 

ac a2c -= -. 
at ay2 

Taking the Laplace transform with respect to time (S) 

for which solutions have been tabulated [ 111 

_eac - ac -= s at 0 

zexp(-st) dt = S 1 exp(-st) Cdt - Ct = o 

0 

= SC- C, (C, is the bulk concentration at t = 0). 

Thus 

a2c a% 
SC-C, =P-$ = - * 

aY2 

LetC=p 
then 

a26 a2p 
&3-c&.=-=$ w 
and, taking a second set of Laplace transforms, this time with respect to 
distance, u, 

-C, 1 exp(-uy) dy 
0 0 

C, +j- o = a’p-oflo_@; (17) 

where u is the transform distance variable and the solution is again obtained 
from tables [ 111. 

Now &,’ = _fZt(dC/dy), and for constant current discharge (dC/dy), is 
not a function of time, so if (dC/dy), is set equal to j (18) then 

Now eqn. (17) becomes 
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c, 
sp--_= 

u 
+J&)-; 

and 

p= UP0 C, 

(a2-S) + S(i-s)- 0(02-s)’ 

Inverting the distance transform (I 1) 

/3 = PO cosh(,/Sy) + - 
CL CL 

sinh(dSy) + s - s cosh(,/Sy ). 

However, as concentrations are finite everywhere in space, 0 does not tend to 
00 as y gets larger, so that the coefficients of ey in the cash and sinh terms 
must sum to zero:- 

Now inverting the time transform (11) gives 

t 
C,(t) = c, - 2j 

J 
-. 
x 

(19) 

If the battery is supplying a sufficient current (i.e., a practical current) then 
there is enough polarization to express the current/interfacial potential rela- 
tionship as 

& = k°Co exp(-_curlF/RT) 

where k” is the electrochemical rate constant at ‘I) = 0 (7 is the potential dif- 
ference from the open circuit voltage). 

Co from the above gives 

& = k”/C.. - ?I exp(-_an7F/RT). 

As I is constant, there will come a time t when the value inside the brackets 
approaches zero, and thus’ the potential starts to approach --oo (see Fig. 
3(b)). This will happen when C(O,r) = 0 or C, = &/7,4/n. 

If current continues to pass after this point, other electrode processes 
will have to take over and severe damage will be done. Thus, in practice, the 
termination of discharge voltage (when t = T) is defined as .the potential 
when the voltage/time trace starts to fall rapidly. 

As j = GI/BFdD from eqns. (ll), (16) and (18), (20) 



eqn. (19) gives 

c = x-2 + m _ _ -that is 71/2 = “‘iy 
2F @ 
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(21) 

or 7’ ‘* = H/Z (where H is a constant). 

Appendix 4 

Low rate discharge 

The mass of electrolyte in the cell is not infinite so that, on slow dis- 
charge, before the condition of end of discharge C(0, r) = 0 is reached the 
bulk acid concentration may have been depleted. 

Considering a box between the positive and negative plates of width 
P(= P, + P-) as shown in Fig. 4 and making use of the simple approximation 

0 
(22) 

for a constant current discharge. 
On rearrangement 

GIP 
- + c’ = c,. 
nFD 

At time r’ there is a change from semi-infinite diffusion to a depletion/diffu- 
sion mode. At this point in time, the total number of moles of acid left in 
the box is (CL, + C,)P/2. After this time, the number of moles consumed in 
time 6 t is I6 t/nF. 

Thus we can write the total number of moles present in the box at t > 
7’ 

t Zdt 
(C- +c,$-J ;;,=(C,+C$. 

7’ 

Rearranging and substituting for C, from above, 

GIP 
2c’+ - 

2 (t - $)I 

nFD =& +co-- nF ’ 

When t = T, C’ has become zero - the end of discharge. 
Writing AT = r - 7’ 



40 

GIP 2A7I 
-=C_+C,-- 
nFD PnF * 

From eqns. (19) and (20) we can find the value of Co and T’ when we switch 
over from semi-infinite diffusion to the depletion case 

GIJT' we = cm -KDF . 

Thus 

_=2C _GYT’ GIP 2ArI -- 
nFD m +DF =’ 

Now as from eqn. (22) 

D(‘” -Co) GI = _ 
P nF 

and from eqn. (23) 

D(C, -C,) = DG&/r’ 

P FP@ ’ 

therefore 

GI& GIP -=_ 
Ffl WF 

so 

P27T 
7= -. 
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From eqns. (24) and (25) since n = 2 

GIP ArI 
_-Cc,-- 
WF 2PF 

and therefore AT = 

Now, as~=r’+Ar 

(23) 

(24) 

(25) 

(26) 


